81 research outputs found

    Global radiant flux from active volcanoes: the 2000–2019 MIROVA database

    Get PDF
    Since 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) has acquired infrared images of the Earth’s surface daily. These data have made it possible to measure the thermal energy radiated by the world’s most famous volcanoes and also to discover and track eruptions in remote and poorly monitored regions. In this work, we present the database of Volcanic Radiative Power (VRP, in W) time series, recorded by the MIROVA (Middle Infrared Observation of Volcanic Activity) system over 2 decades of MODIS observations (2000–2019) at 111 active volcanoes. The database reveals that globally, the number of thermally active volcanoes each year varies between 60 and 80, almost equally partitioned between volcanoes with a basic (50%) and intermediate (45%) composition, while only 5% is represented by volcanoes erupting acidic lavas. Within the investigated period, the global-scale heat flux was almost stationary, and occasionally punctuated by peaks associated with the largest effusive eruptions (e.g., Bardarbunga and Kilauea). The Volcanic Radiative Energy (VRE, in J) emitted by basic volcanoes (~1.8 × 1018 J) in 20 years constitutes 91% of the total, while intermediates and acids contribute only 8% (~1.8 × 1017 J) and 1% (~1.7 × 1016 J), respectively. A comparison with the volume of lava erupted effusively by the same volcanoes reveals that this difference is attributed to the lower efficiency in radiating thermal energy of increasingly acidic (viscous) lava bodies. Each compositional group is associated with a specific relationship between VRE and erupted volume which characterises most of the effusive volcanoes. On the other hand, some open-vent volcanoes reveal that much more heat is released than that theoretically radiated by the erupted lava. This imbalance (hereby called excess radiation) is attributed to an additional heat source, likely associated with an underlying convective magma column and/or to outgassing through a permeable conduit. We are convinced that the database presented in this work will be useful to support new emerging studies on globalscale volcanism and will contribute to a better understanding of each volcanic system

    Global radiant flux from active volcanoes: the 2000–2019 MIROVA database

    Get PDF
    Since 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) has acquired infrared images of the Earth’s surface daily. These data have made it possible to measure the thermal energy radiated by the world’s most famous volcanoes and also to discover and track eruptions in remote and poorly monitored regions. In this work, we present the database of Volcanic Radiative Power (VRP, in W) time series, recorded by the MIROVA (Middle Infrared Observation of Volcanic Activity) system over 2 decades of MODIS observations (2000–2019) at 111 active volcanoes. The database reveals that globally, the number of thermally active volcanoes each year varies between 60 and 80, almost equally partitioned between volcanoes with a basic (50%) and intermediate (45%) composition, while only 5% is represented by volcanoes erupting acidic lavas. Within the investigated period, the global-scale heat flux was almost stationary, and occasionally punctuated by peaks associated with the largest effusive eruptions (e.g., Bardarbunga and Kilauea). The Volcanic Radiative Energy (VRE, in J) emitted by basic volcanoes (∌1.8 × 1018 J) in 20 years constitutes 91% of the total, while intermediates and acids contribute only 8% (∌1.8 × 1017 J) and 1% (∌1.7 × 1016 J), respectively. A comparison with the volume of lava erupted effusively by the same volcanoes reveals that this difference is attributed to the lower efficiency in radiating thermal energy of increasingly acidic (viscous) lava bodies. Each compositional group is associated with a specific relationship between VRE and erupted volume which characterises most of the effusive volcanoes. On the other hand, some open-vent volcanoes reveal that much more heat is released than that theoretically radiated by the erupted lava. This imbalance (hereby called excess radiation) is attributed to an additional heat source, likely associated with an underlying convective magma column and/or to outgassing through a permeable conduit. We are convinced that the database presented in this work will be useful to support new emerging studies on global-scale volcanism and will contribute to a better understanding of each volcanic system

    The megalithic building of S.Erasmo di Cesi: architecture, astronomy, and landscape

    Get PDF
    Abstract. One of the most enigmatic megalithic buildings of Italy is the structure which lies on the S. Erasmo hill near Cesi, in Umbria, a huge complex encompassing an area of around 8000 square meters and enclosed by refined cyclopean walls. Although its date is uncertain, suggested dates comprise the Iron Age and archaic period, down to the third century B.C. The building’s function is also uncertain. Usually identified as a fortified structure, in fact there is a megalithic platform at the southern end of the enclosure which could have served as foundation of a temple or palace and, from the top of Monte Torre Maggiore, a complex of temples dating from the fourth century B.C. overlooks the hill. Similar combinations of megalithic buildings resting half-way to temples placed on high peaks are known to exist. In order to clarify the function of this structure and its position in relation to the surrounding landscape, with particular attention to its visibility and to the directions of visibility from the complex, as well as to the possible astronomical alignments, we present a multi-disciplinary approach to the study of the S. Erasmo complex, which includes the mapping of the sky at the various possible epochs of construction, the creation of a digital model of the landscape in forms of digital maps using Geographic Information System technologies, and a 3D model using various 3D software packages

    Akhet Khufu: Archaeo-astronomical Hints at a Common Project of the Two Main Pyramids of Giza, Egypt

    Get PDF
    Abstract. The architectural complexes composed by the two main pyramids of Giza together with their temples are investigated from an interdisciplinary point of view, taking into account their astronomical alignments as well as their relationships with the visible landscape. Combining already known facts together with new clues, the work strongly supports the idea that the two complexes were conceived as parts of a common project

    The walking behaviour of pedestrian social groups and its impact on crowd dynamics

    Get PDF
    Human crowd motion is mainly driven by self-organized processes based on local interactions among pedestrians. While most studies of crowd behavior consider only interactions among isolated individuals, it turns out that up to 70% of people in a crowd are actually moving in groups, such as friends, couples, or families walking together. These groups constitute medium-scale aggregated structures and their impact on crowd dynamics is still largely unknown. In this work, we analyze the motion of approximately 1500 pedestrian groups under natural condition, and show that social interactions among group members generate typical group walking patterns that influence crowd dynamics. At low density, group members tend to walk side by side, forming a line perpendicular to the walking direction. As the density increases, however, the linear walking formation is bent forward, turning it into a V-like pattern. These spatial patterns can be well described by a model based on social communication between group members. We show that the V-like walking pattern facilitates social interactions within the group, but reduces the flow because of its "non-aerodynamic" shape. Therefore, when crowd density increases, the group organization results from a trade-off between walking faster and facilitating social exchange. These insights demonstrate that crowd dynamics is not only determined by physical constraints induced by other pedestrians and the environment, but also significantly by communicative, social interactions among individuals.Comment: 18 pages; 6 figures; Accepted for publication in PLoS ON

    The Astronomical Orientation of Ancient Greek Temples

    Get PDF
    Despite its appearing to be a simple question to answer, there has been no consensus as to whether or not the alignments of ancient Greek temples reflect astronomical intentions. Here I present the results of a survey of archaic and classical Greek temples in Sicily and compare them with temples in Greece. Using a binomial test I show strong evidence that there is a preference for solar orientations. I then speculate that differences in alignment patterns between Sicily and Greece reflect differing pressures in the expression of ethnic identity

    Locating the festival, positioning the feast: natural and calendar festivals in medieval Slovenia

    Get PDF
    The astronomical cycles and occurrences of the Sun, Moon, planets and certain star constellations were well known to prehistoric, Roman and medieval communities. Archaeoastronomy studies how ancient societies incorporated this knowledge into various aspects of past cultures. The discipline draws on modern astronomy, geodesy, physics, statistics, anthropology, ethnology and archaeology to study and interpret a wide range of source materials, from structural alignments to art, artefacts and inscriptions. This paper presents archaeoastronomical research on the orientation of Romanesque churches across the territory of modern-day Slovenia, focusing on an array of medieval festivals associated with the solstices and equinoxes. It demonstrates a profound connection between these festivals and the alignment of churches

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∌ 2500 at 1 Hz and ∌ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∌ 3 at 40◩ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution
    • 

    corecore